Surface roughness and wettability of dentin ablated with ultrashort pulsed laser.
نویسندگان
چکیده
The aim of this study was to evaluate the surface roughness and wettability of dentin following ultrashort pulsed laser ablation with different levels of fluence and pulse overlap (PO). Twenty-five extracted human teeth crowns were cut longitudinally into slices of approximately 1.5-mm thick and randomly divided into nine groups of five. Samples in groups 1 to 8 were ablated with an ultrashort pulsed laser through a galvanometric scanning system. Samples in group 9 were prepared using a mechanical rotary instrument. The surface roughness of samples from each group was then measured using a three-dimensional profile measurement laser microscope, and wettability was evaluated by measuring the contact angle of a drop of water on the prepared dentin surface using an optical contact angle measuring device. The results showed that both laser fluence and PO had an effect on dentin surface roughness. Specifically, a higher PO decreased dentin surface roughness and reduced the effect of high-laser fluence on decreasing the surface roughness in some groups. Furthermore, all ablated dentin showed a contact angle of approximately 0 deg, meaning that laser ablation significantly improved wettability. Adjustment of ultrashort pulsed laser parameters can, therefore,significantly alter dentin surface roughness and wettability.
منابع مشابه
Nanosecond Laser Surface Patterning of Bio Grade 316L Stainless Steel for Controlling its Wettability Characteristics
In this work, potential of the nanosecond laser processing technique on manipulating the surface wettability of 316L bio grade stainless steel is investigated. Results show that the steel wettability toward water, improves significantly after the laser treatment. Different analyses are assessed in correlation with wettability using Scanning Electron Microscope (SEM), Scanning Tunneling Microsco...
متن کاملThe effect of surface roughness on 1050 aluminum alloy weld profile welded by pulsed Nd:YAG laser
Surface roughness in the welding processes is one of the important parameters in the laser welded metal connections which affects laser beam absorption directly. When the laser beam is irradiated to the surface of the base metal, the surface roughness plays an important role in the amount of beam absorption and the amount of melting achieved and directly affects the penetration depth. The main ...
متن کاملThe effect of surface roughness on 1050 aluminum alloy weld profile welded by pulsed Nd:YAG laser
Surface roughness in the welding processes is one of the important parameters in the laser welded metal connections which affects laser beam absorption directly. When the laser beam is irradiated to the surface of the base metal, the surface roughness plays an important role in the amount of beam absorption and the amount of melting achieved and directly affects the penetration depth. The main ...
متن کاملبررسی مقدماتی اثر لیزر Nd:YAG در مسدود نمودن توبول های عاجی به وسیله میکروسکوپ الکترونی
The purpose of this study was to evaluate the effect of pulsed Nd:YAG laser on the dentin surface by scanning electron microscope (SEM) in order to determine the optimum time and power of radiation to seal the exposed dentinal tubules. Horizontal sections were taken from newly extracted impact third molar teeth. Smear layers from the dentin surfaces were removed by phosphoric acid and all sampl...
متن کاملNonlocal thermoelastic semi-infinite medium with variable thermal conductivity due to a laser short-pulse
In this article, the thermoelastic interactions in an isotropic and homogeneous semi-infinite medium with variable thermal conductivity caused by an ultra-short pulsed laser heating based on the linear nonlocal theory of elasticity has been considered. We consider that the thermal conductivity of the material is dependent on the temperature. The surface of the surrounding plane of the medium is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical optics
دوره 20 5 شماره
صفحات -
تاریخ انتشار 2015